Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Environ Res ; 216(Pt 1): 114481, 2023 01 01.
Article in English | MEDLINE | ID: covidwho-2095321

ABSTRACT

Several studies are pointing out that exposure to elevated air pollutants could contribute to increased COVID-19 mortality. However, literature on the associations between air pollution exposure and COVID-19 severe morbidity is rather sparse. In addition, the majority of the studies used an ecological study design and were applied in regions with rather high air pollution levels. Here, we study the differential effects of long-term exposure to air pollution on severe morbidity and mortality risks from COVID-19 in various population subgroups in Switzerland, a country known for clean air. We perform individual-level analyses using data covering the first two major waves of COVID-19 between February 2020 and May 2021. High-resolution maps of particulate matter (PM2.5) and nitrogen dioxide (NO2) concentrations were produced for the 6 years preceding the pandemic using Bayesian geostatistical models. Air pollution exposure for each patient was measured by the long-term average concentration across the municipality of residence. The models were adjusted for the effects of individual characteristics, socio-economic, health-system, and climatic factors. The variables with an important association to COVID-19 case-severity were identified using Bayesian spatial variable selection. The results have shown that the individual-level characteristics are important factors related to COVID-19 morbidity and mortality in all the models. Long-term exposure to air pollution appears to influence the severity of the disease only when analyzing data during the first wave; this effect is attenuated upon adjustment for health-system related factors during the entire study period. Our findings suggest that the burden of air pollution increased the risks of COVID-19 in Switzerland during the first wave of the pandemic, but not during the second wave, when the national health system was better prepared.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Humans , COVID-19/epidemiology , Bayes Theorem , Switzerland/epidemiology , Environmental Exposure/analysis , Air Pollution/analysis , Air Pollutants/toxicity , Air Pollutants/analysis , Particulate Matter/toxicity , Particulate Matter/analysis , Nitrogen Dioxide/analysis
2.
Environmental research ; 2022.
Article in English | EuropePMC | ID: covidwho-2044999

ABSTRACT

Several studies are pointing out that exposure to elevated air pollutants could contribute to increased COVID-19 mortality. However, literature on the associations between air pollution exposure and COVID-19 severe morbidity is rather sparse. In addition, the majority of the studies used an ecological study design and were applied in regions with rather high air pollution levels. Here, we study the differential effects of long-term exposure to air pollution on severe morbidity and mortality risks from COVID-19 in various population subgroups in Switzerland, a country known for clean air. We perform individual-level analyses using data covering the first two major waves of COVID-19 between February 2020 and May 2021. High-resolution maps of particulate matter ( Graphical Image 1

3.
Science of The Total Environment ; : 147607, 2021.
Article in English | ScienceDirect | ID: covidwho-1225400

ABSTRACT

The lockdown and related measures implemented by many European countries to stop the spread of the SARS-CoV-2 virus (COVID-19) pandemic have altered the economic activities and road transport in many cities. To rigorously evaluate how these measures have affected air quality in Europe, we developed Bayesian spatio-temporal (BST) models that assess changes in the surface nitrogen dioxide (NO2) and fine particulate matter (PM2.5) concentration across the continent. We fitted BST models to measurements of the two pollutants in 2020 using a lockdown indicator covariate, while accounting for the spatial and temporal correlation present in the data. Since other factors, such as weather conditions, local combustion sources and/or land surface characteristics may contribute to the variation of pollutant concentrations, we proposed two model formulations that allowed the differentiation between the variations in pollutant concentrations due to seasonality from the variations associated to the lockdown policies. The first model compares the changes in 2020, with the ones during the same period in the previous five years, by introducing an offset term, which controls for the long-term average concentrations of each pollutant during 2014–2019. The second approach models only the 2020 data, but adjusts for confounding factors. The results indicated that the latter can better capture the lockdown effect. The measures taken to tackle the virus in Europe reduced the average surface concentrations of NO2 and PM2.5 by 29.5% (95% Bayesian credible interval: 28.1%, 30.9%) and 25.9% (23.6%, 28.1%), respectively. To our knowledge, this research is the first to account for the spatio-temporal correlation present in the monitoring data during the pandemic and to assess how it affects estimation of the lockdown effect while accounting for confounding. The proposed methodology improves our understanding of the effect of COVID-19 lockdown policies on the air pollution burden across the continent.

SELECTION OF CITATIONS
SEARCH DETAIL